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Thoughts from an automatic-control (and linac) perspective

1. Complex-coefficient LTI systems

2. Energy-based parametrization of cavity dynamics

3. Normalized cavity dynamics, sensitivity to disturbances
4. Parasitic modes
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Baseband cavity models

Complex SISO representation Real TITO representation
Wi/2
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The complex representation is well known, but not much used for control design.

Complex-coefficient systems are ubiquitous in communications, but rare in control:

“Poles always come in conjugate pairs” nope, they lied to you

Other control applications:

Vibration damping of rotating machinery FB linearization of RF amps.
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Relation between real and complex representations

Complex SISO representation Real TITO representation
G(5) = Gite(s) + iGim () o) — [Gre() = Gins)
equiv - GIm(S) GRe(S)

Consider eigendecomposition
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Note: G*(iw) = G(—iw). Positive and negative frequencies are intertwined in Gequiv(s)

Advantages of the complex-coefficient representation
m Simplifies understanding, calculations, life in general, etc
m Structure is implicit, good for system identification

m More efficient computations
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Intuitive understanding of loop-phase adjustment

Open-loop system: e%«4 C(s)e 0 P,(s)e " = ’Lo(s) where & = 0,4; — 0.

e/0adj C(s) > e_iePa(s)e_ST

Re L(iw)

-

Loop-phase-adjustment error § gives corresponding phase-margin reduction!

§ = 45°



Energy-based parametrization
of cavity dynamics



Accelerator Cavity Modeling (1/2)
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Accelerator Cavity Modeling (1/2)
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Equivalent-circuit parametrization:
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Py = 5 Qe gl

RF drive is modeled as fictitious generator current lg. Problematic.

“One word of caution is required here: /.../ for considerations where Qe varies /.../ or where
(R/Q) varies /.../ the model currents cannot be considered constant; they have to be
re-adapted” [Tiickmantel (2011)]



Accelerator Cavity Modeling (1/2)
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Energy-based parametrization:
dA Q
E = (—")/ + IACL))A + \/ 2'7exth + ilb

A — Mode amplitude [v/J]

Fg — Forward wave [vW]

V=aA (a = wa(r/Q)>

Py = |Fg|2
Haus (1984) Waves and fields in optoelectronics
plus beam loading
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Equivalent-circuit parametrization:

dVv .
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Accelerator Cavity Modeling (1/2)
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Equivalent-circuit parametrization:

Energy-based parametrization:
dA

. o dVv .

W = (_7 + ’Aw)A +v 2"Yexth + Elb gt = (—w1/2 + /Aw)V—i- RLw1/2 (2|g+|b)
_ 2

Pg = |Fg| g_ZQQext||g|

Advantages of energy-based parameterization:
m Cleaner expressions, e.g., Py = |Fg|2
m States and parameters are well defined

m Direct connection to physical quantities of interest



Accelerator Cavity Modeling (1/2)

Energy-based parametrization: Equivalent-circuit parametrization:

dA . f— a dVv

1 r 2
Pg = ZaQext lg|

=(—w1/2 + iDw)V+Riwy o (2lg+1b)

Helpful to think of v as both decay rate and bandwidth.
The total decay rate v = 79 + Yext, NOt so intuitive if considered as bandwidths
Common for laser cavities
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Optimal coupling and detuning

Minimize |Fgo|? = (=70 — Yext + IAw)Ag + Elbo

2'yext
with repsect to Aw and Yext

. 1 o 1 Qo
Solution: Aw = —A—olm Elbo, Yext = V0 — A—ORe EIbO =70 + Ybeam

/

iAwA é‘_'YextA :’YOA - N

V2ext Fg

Q
—I
2b

Terms of %A [v]/s]



Normalized cavity dynamics
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Normalization

1 Oélb

1 .
a= —A, fg = TMF@ b = ——.
A0

- ’on 2
Normalized cavity dynamics
a=(—y+ilAw)a+y(fg +ip).

At nominal operating point, with optimal coupling and tuning,
1<f0 <2, 0<Reip <1
Relative disturbances d, and dj, give rise to

fy ~ (14 db)(fgo + Fg) ~ fgo + fy + fyodh

Introducing the relative field error z =1 — a, we have

z=(—+iAw)z+ ’)/?g + Yfgody + vibodh
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Transfer functions around operating point

At nominal operating point
z=(—v+iAw)z+ 7fg + vfg0dg + ibody
The transfer function from control action to the cavity field is given by

i
P -
() s+v—ilAw

Transfer functions from relative disturbances to relative field errors are given by

'Ddg—>z(5) = ng'Da(S)
Pg,—2(5) = iboPa(s)

For optimally tuned and coupled superconducting cavities fgo = 2.

Additional factor 2 in disturbance sensitivity to relative amplifier variations!
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Impact of disturbances

For clarity, assume that Aw = ¢5, = 0, 50 Yibg = Ybeam and Yfgo = V0 + Vext + Ybeam

Transfer functions from relative disturbances to relative field errors are given by

Y0 T Yext + Vbeam
P, S) = 3
dg_)Z( ) S+ + Yext ( )
Ybeam
b_>Z( ) S+ 70 + Vext ( )
Sensitivity to amplifier ripple, equation (4), cannot be made smaller than %;:Lﬂ
o

Difficulty of field control is determined by ~g and Ypeam, but typically v = 279 + Ybeam

13



Parasitic modes

14



Parasitic modes
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Parasitic modes

e ;+)—> Pa(s) 2




Parasitic modes

A. Calibrate setpoint v, for a, = aj with

short/low-current beam pulses (ipg = 0)
fg %+ P.(s) aa B. Operation with nominal beam current and

regulation to the set point




Parasitic modes
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A. Calibrate setpoint v, for a, = aj with
short/low-current beam pulses (ipg = 0)

B. Operation with nominal beam current and
regulation to the set point

Gives error steady-state error:
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Parasitic modes

A. Calibrate setpoint v, for a, = aj with

b short/low-current beam pulses (ipg = 0)
f a . . .
g %_'_ P.(s) a B. Operation with nominal beam current and

regulation to the set point

Gives error steady-state error:
be(s)
5_af_ar_ PO PO, o
Py(s) .<L.(+} Vpu T P+ Ao) O
” ~ (P<(0) = P(0))ino

R2
ESS medium- cavity: & = Py(0)ipg ~ — 270 — 57x
/Aw57r/6 lAw57r/6

~ 0.00187i <+ 0.11°
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Parasitic modes

: 7—@0 P.(s) 2
be(s)
P(s) .éo@-

A. Calibrate setpoint v, for a, = aj with
short/low-current beam pulses (ipg = 0)

B. Operation with nominal beam current and
regulation to the set point

Gives error steady-state error:

_ « _ Px(0) = P(0)
o= af —a, = T'D;(O)Pa(o)'bo

~ (P«(0) = Pu(0))ino

How to handle this? Do nothing, Kalman filter, re-calibrate?
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Parasitic modes
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Relations between same-order modes
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Relations between same-order modes

fg % YV

S+ v — iAwr|ay
op-1
(] Oz _l
P.v(s) = —1)"=" a -
cav( ) ’771' ';( ) s +'7extn + ’)/O _ IAw,,
NED |
Qo
Tr N-1 Vpi
R s+ —ilw ?(-1) R

2
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) where R, := v/2sin(nr/(2N))
Awp, = (Rn - 2)kchceII



Bode magnitude plot for 6-cell cavity

|PcaV(iw)|‘
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Frequency, w/2m [Hz]
Similar to ESS medium-/3 cavity, Yext, = 700 Hz
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Fit to measured data

|PC3V(iw)| A

—— Data
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Measurements by P. Pierini on warm 6-cell ESS medium-3 cavity
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Fit to measured data

—— Data
| Peay (i) \ — Model fit
~100 . AV
1| i ~
1 T T 11 T T L
-107 -10® -10° 10° 10° 107

Frequency, w/2m [Hz]

Measurements by P. Pierini on warm 6-cell ESS medium-3 cavity

Four parameters were fitted. Estimated resistive decay rate, 79/2/m = 35 kHz.
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Example Control Strategies for Parasitic Modes (1/3)

Pl controller + 3rd order filter
Set controller parameters for good phase of resonant “bubble”

|L(iw)]
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Example Control Strategies for Parasitic Modes (2/3)

Pl controller + 2nd order filter
Wide-band suppression of the “bubble”

|L(iw)]
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One-Sided Notch Filter
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Example Control Strategies for Parasitic Modes (3/3)

Pl controller 4+ one-sided notch filter 4+ 2nd order filter
Notch out the “bubble”

L)
A Im L(Iw) . \
Re L(iw) 103 10°
P |5(’w)| I\
10°
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Summary

m Analyzing the field control loop as a complex-coefficient system is easier and gives
more understanding. Particularly for loop-phase adjustment and parasitic modes.

m Energy-based cavity parametrization is more convenient and fundamental.
m There is a factor =~ 2 in relative sensitivity to amplifier variations.

m Parasitic modes may give systematic control error since the controlled variable is not
measured.
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Summary

m Analyzing the field control loop as a complex-coefficient system is easier and gives
more understanding. Particularly for loop-phase adjustment and parasitic modes.

m Energy-based cavity parametrization is more convenient and fundamental.
m There is a factor =~ 2 in relative sensitivity to amplifier variations.

m Parasitic modes may give systematic control error since the controlled variable is not
measured.

More details in upcoming PhD thesis.
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